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TRANSITION BIFURCATION BRANCHES IN 
NON-LINEAR WATER WAVES 
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SUMMARY 

We are concerned with the numerical computation of progressive free surface gravity waves on a horizontal 
bed. They are regarded as families of bifurcation branches (i, A ) ,  of constant discharge Q. 

Numerically we determine two transition values Q, and Q, with corresponding transition bifurcation 
branches that classify waves into three disjoint branch sets B , ,  B,  and B,. Their members are families of 
waves (A, A ) ,  satisfying the conditions 0 < Q' < Qi, Qi < Q 2  < Q: and Q: < Q' < B/27, respectively. 

The bifurcation patterns are analysed in some detail from the computed bifurcation diagram, which 
shows that in B ,  bifurcation is to the left and the amplitude A increases as the wavelength A decreases; in 
B ,  bifurcation is to the right and turning points are observed nearly at breaking point. In B ,  bifurcation 
is to the right and A increases monotonically with I.. 
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INTRODUCTION 

The subject of numerical computation of progressive free surface gravity waves has made 
significant progress in recent The wide variety of numerical techniques used includes 
perturbation expansions, boundary integral methods, finite difference, finite-element and 
boundary element methods. 

In most formulations of the water wave problems the undisturbed water depth is taken as an 
independent parameter. Results are thus presented as families of waves of constant depth. Also 
it is usual to perform computations in terms of non-dimensional wavelength (1 = 271). All this is 
well suited for boundary integral and perturbation expansion techniques which have proved 
very accurate for the problem of waves on a horizontal bed. 

Variational  technique^,^.^ in conjunction with the finite element m e t h ~ d , ~  the Kantorovich 
method' etc., have proved efficient in the computation of problems of engineering interest in 
which the bed profile may not be uniform. Examples of such problems are critical flows over 
 weir^,^.^ flows over spillway crests,l0,' waves created by upstream obstructions,' 2,1 etc. In 
the variational formulation of these free surface problems the discharge Q and the wavelength 
i (or domain length) are independent parameters. Their relative behaviour, their interdependent 
ranges of physical significance, the question of multiple solutions, etc. are problems of theoretical 
as well as of practical computational importance. 

In this paper we study numerically the Q-1- relationship for the case of non-linear water waves 
on a horizontal bed. The work is aimed at determining two transition values Q ,  and Qz of 
the discharge that completely determine three disjoint wave regions B,, B, and B,. 

0271 -2091/86/040219-09SO.5.00 
0 1986 by John Wiley & Sons, Ltd. 

Received 8 M a y  I985 



220 E. F. TOR0 

The problem is interpreted as a bifurcation problem in which we compute branches of solutions 
(A, A), for constant Q bifurcating from the uniform solution of zero amplitude A .  The transition 
branches corresponding to Q, and Q2 are the boundaries between B ,  and B,  and B ,  and B 3 ,  
respectively. 

The bifurcation points (Al, Dl) and (A,, D,) of the transition branches give two transition 
wavelengths (1, and 1,) and two transition asymptotic depths (Dl and D,). 

The regions B , , B ,  and B ,  are determined by the Qz-ranges (O,Qf], (Q:,Q:] and 
(Q:,8/27), respectively. In B ,  bifurcation is to the left and A increases as A decreases. In B ,  
bifurcation is to the right and a right turning point is observed which gives rise to multiple 
solutions. In B ,  bifurcation is to the right and A is observed to increase monotonically with A. 

The numerical computations are carried out using a new Kantorovich algorithm, the details 
of which are reported elsewhere.8 

COMPUTATIONAL DETAILS 

The progressive free surface gravity waves considered in this paper are assumed to be 
two-dimensional, irrotational, steady, incompressible, non-viscous and with no surface tension. 
These non-linear waves are governed by a variational principle’ with functional 

and the constraints 

= 0 on the bed y = - 1 and t,h = Q on the free surface. (2 )  
The position of the free surface y = - 1 + h(x)  is governed by h(x)  and the internal flow field 

distribution is given by the volumetric stream function $(x,y). The parameters Q and A (the 
discharge and domain length, respectively) are prescribed whereas the unknowns h(x) and $(x, y) 
arise as the result of computation. 

All quantities in (1) and (2)  have been non-dimensionalized with respect to length H, (the 
total head or stagnation level) and time (H0/g)”’, where g denotes the acceleration due to gravity. 

Boundary conditions at the inlet and outlet boundaries (which are made to coincide with a 
crest or trough) are those of normal flow and arise as natural conditions in the variational 
formulation. 

The computations reported on in this paper were carried out using a Kantorovich method* 
based on (1) and (2). The technique consists of assuming an expansion for J in which $ is expressed 
as some series of functions in y with coefficients which are functions of x. Truncation of the 
series after N terms and the stationary conditions give a system of N non-linear ordinary 
differential equations with appropriate boundary conditions. Numerical solution of this boundary 
value problem gives the position of N streamlines including that of the free surface. The algorithm 
is also applicable to other free surface problems with arbitrary bed profile b(x), and full details 
of the implementation are given in Reference 8. 

For a prescribed value of the discharge Q with 0 < Q2 < 8/27 and a value of 1 in an appropriate 
subinterval of (0, co) a wave of amplitude A may be computed. In Figure 1, as an example, we 
show a full computed wave for Q2 = 0.2691909 and 1 = 4.25. The computed amplitude is 0207578. 

It is well known that for a value of Q in the given range there are two asymptotic solutions 
D, and Do which are the positive roots of the cubic 

2h3 - 2 h ~  + QZ = 0. (3) 
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D, is termed the rapid (or supercritical) solution and Do the tranquil (or subcritical) solution. 
In the context of the present paper we shall call Do the trivial solution and it will be denoted 

by (A, Do). The trivial solution can be computed for any (positive) value of the domain length A. 
Non-trivial solutions ( A  > 0) will be points on a branch (A, A)a bifurcating at a point ( A o ,  D o )  as 
illustrated in Figure 2. 
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Figure 1. Computed wave of amplitude A = 0.207578 for prescribed Q' = 0.2691909 and ,I = 4.25 
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Figure 2. Sketched bifurcation branch (,I,A)Q from trivial solution at 3, = I ,  
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The bifurcation point satisfies the linear wave theory relation 

A, = 4n(1 - D,)/tanh(2nD,/A0). (4) 
The full bifurcation branch (A, A)Q is determined by computing a number of points (complete 

wave solutions) on it, typically twenty. It should be remarked that the computation of a single 
points on a branch implies a certain computational effort. For instance for the computed wave 
of Figure 1 we used a 40 x 120 mesh and thus solved 4800 algebraic (non-linear) equations. 

Some of the questions arising are: (i) Is bifurcation to the left or to the right? (ii) If the 
bifurcation pattern changes where does it occur? (iii) Are there turning points? etc. 

The main theme of this paper is the numerical computation of two transition values Q1 and 
Q, of the discharge that determine two transition branches (j., A)Ql and (i, A)Q2.  These branches 
separate three wave regions B,, B, and B, whose bifurcation patterns answer the questions 
posed above. 

DETERMINATION O F  THE TRANSITION BRANCHES 

Computed bifurcation branches (A,  A ) ,  for many values of the discharge Q give a bifurcation 
diagram as illustrated in Figure 3. There, we have chosen three representative curves bi of the 
three branch regions Bi suggested by the diagram. 

Since each branch has constant discharge Q we seek a definition of B,, B,  and B,  in terms 
of Q. Hence the boundary branches will be determined by two values Q1 and Q,, the computation 
of which is best handled in terms of the corresponding bifurcation points (Al,Dl) and (A,,D,) 
as illustrated in Figure 4. As discussed previously the sought-for discharge values Q1 and Q, 
are related to D ,  and D ,  via equation (3) and these are related to ,I1 and A, via equation (4). 

xlo-2 

Critical flow, Q2 - 8/27. Dn - 213 

I x 
1 2 3 4 5 6 7 

65 -1 
0 

Figure 3. Computed bifurcation diagram 
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Stagnation level 

Figure 4. Sketch of transition bifurcation branches defining B , ,  B ,  and B ,  

Computation of A l  

We begin by considering several computed bifurcation branches (I, A)a, for several guessed 
values Qi of the discharge. We seek the A-co-ordinate of the bifurcation point of a branch that 
is the right boundary of the region B ,  of all branches bifurcating to the left (see Figures 3 and 
4). From the computed results illustrated in the diagram of Figure 3 this value Al appears to be 
about 2.5. By considering the inverse curves Ii(A), Figure 3 also indicates that the derivative 
dA/dA should change from negative to positive for a finite range (0, E )  of A,  as we pass from B ,  
to B,. 

The computation of A l  proceeds iteratively, as illustrated by the flow chart of Figure 5. For 
each computed curve I'(A) we consider its derivative dI'/dA at a fixed amplitude value A = A ,  
which is chosen arbitrarily (e.g. A ,  = 0.01 1). Since each curve is defined by a discrete set of 
points, the numerical calculation of d' necessitates the use of curve fitting and interpolation 
procedures for which the NAG routines EOlBAF, E02BBF and E02BCF are used. 

associated with it which is the I-co-ordinate of 
the bifurcation point of the branch (A, A)oi.  Interpolation to d = 0 from the set of points (d', Ib) 
gives a new value Ar ' in the iteration procedure. Use of this new value in equation (4) gives a 
new asymptotic depth D;' and this gives a new discharge value Q"' from equation (3). A 
new bifurcation branch (A, A)Q+ 1 can now be computed. 

The iteration procedure is stopped if the derivative d" ' is less than a preassigned small value 
TOL (typically and the sought solution is taken as I, = IF '. When computing a new 
branch we need only consider moderately large values of the amplitude A to account for the 
local curve behaviour. Six points per curve are found to be sufficient. 

The computed solution for the transition wavelength A1 is 2.53142. In Table I we give numerical 
values of points (d', Ab) used in the iteration procedure for a chosen value of A,. Also displayed 
there are the corresponding discharge values (squared) and the derivative values d' of each curve 
at A = A , .  

For each number d' there is a wavelength 
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Figure 5. Flow chart for the computation of I,. 

Table I. Numerical values in iteration procedure for finding transition wavelength 
dI(AO = 0.01151) 

Curve (QiI2 Db no d' 

1 0.1400463 
2 0.2386050 
3 0.2497685 
4 0.2521845 
5 02522635 
6 0.2529761 
7 0.2560000 
8 0.2691909 

0.9 166667 
0.8245062 
0.80935 15 
08058132 
0.8056958 
08046307 
0.8000000 
07771403 

1.04723 
2.24987 
2.47586 
2.53124 
2.53309 
2.55000 
2.62482 
3.03392 

- 0.62399 
- 012384 
- 0.02898 
- 0.00046 

0.00240 
0.00829 
0.03225 
0.31845 
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By noting that A,/D, is approximately IT we speculate that i1 has (from equation (4)) the exact 
value 

Al  = 4744 + tanh (2)) = 2.5314865.. ( 5 )  

This is only a conjecture which remains to be rigorously checked through analytical methods. 
However, numerical evidence supports expression (5) for A,. Smaller values of the fixed amplitude 
level A ,  have the effect of increasing the computed value of A, and thus making it closer to the 
suggested exact value. At the same time it is reasonable to suppose that it is the smaller values 
of A ,  which would give the more reliable results. In fact direct substitution of Al from (5) gives 
a solution branch (A,A), that has all the features of the sought-for transition branch to seven 
decimal places. Therefore we take as the computed solution A, = 2.5314856. From equations (4) 
and (3) we obtain Do = 0.8057973 and Q: = 0.2521952, respectively. 

We have found a transition value Q1 of the discharge such that all bifurcation branches (A, A) ,  
with Q < Q 1  bifurcate to the left, A increases as A decreases and a highest wave exists as the 
intersection point of a branch with the stagnation level. These branches are the members of the 
family B , .  

Determination of A, 
Computationally, as illustrated by the bifurcation diagram of Figure 3, we have found 

a family of branches that bifurcate to the right and have turning points before intersecting the 
stagnation level. Also, we observe another family whose members bifurcate to the right and tend 
to a maximum value below the stagnation level. 

Theoretically, it is k n ~ w n ' ~ , ' ~  that conoidal and shallow water waves may be interpreted as 
families of waves whose amplitudes are bounded above by that of a solitary wave. This can be 
seen by analysing the phase-plane picture of the Korteweg-de Vries equation for instance. 

One may therefore think of the transition branch (A, A)Q2 as that associated with the highest 
solitary wave, i.e. the solitary wave of discharge Q,. Since we do not know the detailed behaviour 
of the branches (2, A ) ,  as A -+ 00, or equivalently as Q' -+ 8/27, there is a degree of speculation 
here. As before the determination of Q,  is carried out via the bifurcation point (A,, 0,) of the 
corresponding bifurcation branch (see Figure 4). 

Several numerical solutions for the limiting solitary wave have been published. Williams3 
gives the solution HID = 0.833 197 where H is the wave height above the (supercritical) asymptotic 
level D. More recently Hunter and Vanden-Broeck16 have given the solution HID = 083322. 

Assuming Williams's solution, in the units of this paper, we have ( 1  - D ) / D  = 0.833197, i.e. 
D=O.545495. Recalling that D is the smallest positive solution D, of the cubic (3) we obtain 
Q2 = 0.2704895 and therefore the tranquil asymptotic level Do is 0.7745861. Substitution of Do 
into equation (4) gives A, = 3.0848677. Hence the sought-for bifurcation point is A, = 3.0848677, 
D, = 0.7745861 and the transition discharge value is Q ,  = (0.2704895)"2. 

We have thus determined the discharge values Q1 and Q ,  of the transition bifurcation branches 
(A, A),,  and (A, A)Q2 together with their bifurcation points (A, ,  0,) and (A,, 0,) (see Figure 4). 

CONCLUDING REMARKS 

Two transition values Q, and Q,  of the discharge Q have been computed which classify all 
water waves in terms of the bifurcation patterns of three families B , ,  B ,  and B,. Two 
corresponding transition branches (A ,  A),, and (A, A)Q2 separate B ,  from B,  and B ,  from B, ,  
respectively. 
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The calculated bifurcation points (A, ,  0,) and (A,, D,) of these two branches may be interpreted 
as giving two transition wavelengths A, and A, or two transition asymptotic depths D, and D,. 

From numerical evidence the salient features of B , ,  B ,  and B ,  have also been indicated. 
Branches in B ,  satisfy 0 < Q2 < Q: and 0 < A < Al = 2.5314856; they bifurcation to the left and 
A increases as 1 decreases. B ,  may be regarded as a deep-water wave region and A, as the 
transition wavelength into this region. 

Branches (A, A ) ,  in B,  satisfy Q: < Q2 < Q:; bifurcation is to the right and for the Q-cases 
computed there is a turning point before intersecting the stagnation level. However, we are 
not certain whether the turning point persists as a feature of each branch in B,  as 
Q’ -+ Q: = 0.2704895, i.e. for large values of A. 

Branches (A, A) ,  in B ,  satisfy Q: < Q2 < 8/27 and 1” > A, = 3.0848677. Bifurcation is to the 
right and A increases monotonically with A. Unlike B ,  and B ,  members of B ,  do not have a 
highest wave. 

Although there is still uncertainty about the detailed behaviour of branches in B,  and B ,  as 
A+ 00 the results of the present paper may effectively be used in practical applications, e.g. critical 
flows over weirs, waves due to the presence of upstream obstructions etc. 

The results are indeed useful when computing non-linear waves regardless of the method. For 
instance highest waves can only be expected for Q’ < Q:. Also, the features of B ,  give a clear 
warning regarding the computation of the highest waves. It would be tempting to extrapolate 
from computed points below the turning point. 

The computed bifurcation diagram of Figure 3 also provides information as to which wave 
zones are bound to cause computational difficulties, e.g. near A, and near every turning point. It is 
also apparent that the parameter A loses significance at large values. 

Finally, although B ,  may be identified with a deep-water wave region, B ,  and B ,  do no strictly 
represent an intermediate and a shallow-water wave region, respectively, in the classical sense. 
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